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Abstract 
 
A study of the velocity and thermal boundary layers on a semi-infinite inclined plate with temperature oscillations is 

presented in this work. The non-linear, coupled parabolic integro-partial differential equations governing flow and heat 
transfer have been solved numerically using an implicit finite difference scheme of Crank-Nicolson type. The numeri-
cal values for the flow field, temperature, shearing stress, and heat transfer coefficients are presented in a graphical 
form. It is observed that the velocity and temperature profiles decrease as the frequency parameter increases. 
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1. Introduction 

Natural convection heat transfer plays an important 
role in our environment and in many engineering 
devices. The buoyancy force induced by the density 
differences in a fluid causes natural convection. The 
applications include, for example, the cooling of the 
core of a nuclear reactor in the case of a pump, or 
power failures and the warming and cooling of elec-
tronic components. Fujii and Imura [1] studied ex-
perimentally the natural convection heat transfer from 
a plate with arbitrary inclination using two plates with 
different dimensions. Pera and Gebhart [2] studied the 
laminar natural convection boundary layer flow 
above horizontal and slightly inclined surfaces with 
uniform temperature and heat flux. Perturbation 
analysis was employed to solve the problem. Chen et 
al. [3] studied the flow and heat transfer characteris-
tics of laminar free convection in boundary layer 
flows from horizontal, inclined, and vertical plates 
with variable wall temperature and heat flux. Ekam-

bavannan and Ganesan [4] presented a finite-
difference solution of unsteady natural convection 
boundary layer flow over an inclined plate with vari-
able surface temperature. These problems are of basic 
importance, thus other physical situations also need 
investigation. One such case is when the plate tem-
perature is oscillating; how is the flow affected? Such 
issue is particularly important and useful in the fields 
of space science, nuclear engineering, structural engi-
neering, and so on.  

Keller and Yang [5] studied the heat transfer re-
sponses of a laminar free convection boundary layer 
along a vertical heated plate to surface temperature 
oscillations, when the mean surface temperature is 
proportional to x n, where x n is the distance measured 
from the leading edge of the plate. An exact analysis 
of Stoke's problem for an infinite vertical plate, whose 
temperature varies linearly with time, was studied by 
Soundalgekar and Patil [6]. The motion of a semi-
infinite incompressible viscous fluid caused by the 
oscillations of a vertical plate was studied by Soun-
dalgekar [7]. They derived closed-form solutions to 
velocity, temperature, and penetration distance 
through which the leading edge effect propagates. 
The two-dimensional unsteady flow of a viscous in-
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compressible fluid past an infinite vertical plate has 
been studied by Soundalgekar [8] under the following 
conditions: (i) constant suction at the plate, (ii) wall 
temperature oscillating at a constant non-zero mean, 
and (iii) a constant free stream. The approximate solu-
tions to the coupled non-linear equations governing 
the flow have been carried out for transient velocity, 
transient temperature, the amplitude and phase of skin 
friction, and the rate of heat transfer. Verma [9] ana-
lyzed the effect of the oscillation of surface tempera-
ture on unsteady free convection from a horizontal 
plate. Soundalgekar et al. [10] studied the flow of a 
viscous incompressible fluid past an impulsively 
started infinite vertical plate in the presence of foreign 
mass under the condition of variable plate tempera-
ture and constant heat flux. Houssain [11] solved the 
problem of simultaneous heat and mass transfer in 
two-dimensional free convection from a semi-infinite 
vertical flat plate. An integral method is used to find a 
solution for zero wall velocity with small-amplitude 
oscillatory wall temperature. Das et al. [12] addressed 
the transient free convection flow past an infinite 
vertical plate with the periodic oscillation of surface 
temperature. They simplified the problem by assum-
ing small values of the Grashof number Gr (<<1). In 
this case, the temperature is independent of the flow, 
and the heat is transferred by conduction only. They 
used the Laplace transform technique to solve the 
simplified equations, and the results show that the 
transient velocity profile and the penetration distance 
decrease with an increase in the frequency of plate 
temperature oscillation. Hossain et al. [13] studied the 
heat-transfer response of a laminar free convection 
boundary layer flow of a viscous incompressible and 
electrically conducting fluid along a vertical plate to 
surface temperature oscillations. Revankar [14] inves-
tigated the free convection effects on flow field for 
two cases: (1) when a submerged infinite plate is set 
into motion impulsively with oscillating plate tem-
perature, and (2) when the submerged infinite plate is 
set into motion with linear harmonic oscillation paral-
lel to itself with oscillating temperature. The exact 
solutions for temperature and flow field are presented. 
The steady and unsteady free convection from a verti-
cal wall with stream-wise surface temperature oscilla-
tion was investigated by Li et al. [15]. For small val-
ues of the Grashof number, they obtained an asymp-
totic formula for the average Nusselt number using a 
perturbation method. Lorenzo and Padet [16] con-
ducted a parametric study of the free convection 

along the vertical wall when a periodic heat flux den-
sity containing adiabatic period is applied. Their re-
sults show the importance of the adiabatic period to 
let the surrounding fluid refresh itself before applying 
a new heating period, leading to an increase in free 
convection heat transfer. Rani and Devaraj [17] pre-
sented a numerical solution for free convection flow 
past a vertical cylinder with temperature oscillations. 
They solved non-dimensional governing equations by 
using an implicit finite difference scheme of Crank-
Nicolson type. The effect of the periodic oscillation of 
the surface temperature on the transient free convec-
tion from a vertical plate was investigated by Saeid 
[18]. They observed that increasing the amplitude and 
the frequency of the oscillating surface temperature 
will decrease the free convection heat transfer from 
the plate to both air and water.  

The unsteady natural convection flow past a semi-
infinite inclined plate with temperature oscillations 
has been given very scant attention in the literature. 
Hence, we propose to study the problem of heat trans-
fer effects on a semi-infinite inclined plate with tem-
perature oscillations. The governing boundary layer 
equations are first cast into a dimensionless form, and 
the resulting system of equations is then solved by an 
implicit finite difference scheme. In the present analy-
sis, a relatively higher Grashof number is considered 
(104 < Gr <109), where the laminar boundary layer is 
applicable for studying the effect of oscillating plate 
temperature on the free convection effects on the 
semi-infinite inclined plate.  
 

2. Mathematical analysis  

We consider a two-dimensional unsteady flow of a 
viscous incompressible fluid flow past a semi-infinite 
inclined plate with temperature oscillations. The 
analysis of the present paper is based on the following 
assumptions: 

(1) The plate makes an inclination angle φ  to the 
horizontal. 

(2) The x-axis is measured along the plate, and the 
y-axis is taken along upward normal to the plate. 

(3) Initially at time 0t ≤′ , it is assumed that the 
plate and the fluid are at the same temperature, and at 
time 0t >′ , the temperature of the plate is main-
tained at an oscillating temperature. 

(4) The effect of viscous dissipation is not consid-
ered in the energy equation. 

(5) All the fluid properties are assumed to be con- 
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Fig. 1. Schematic diagram. 

 
stant, except for the influence of density variation 
with temperature, which is considered only in the 
body force term.  

(6) There is no chemical reaction between the dif-
fusing species and the fluid. 

By assuming Boussinesq's approximation, the un-
steady two-dimensional boundary layer flow can be 
shown to be governed by the following equations: 

 

0
y
v

x
u =

∂
∂+

∂
∂   (1) 

2

2

cos ( )

sin ( )

y

u u uu v g T T dy
t x y x

ug T T
y

β φ

β φ υ

∞

∞

∞

∂ ∂ ∂ ∂ ′ ′+ + = −
′∂ ∂ ∂ ∂

∂′ ′+ − +
∂

∫

 (2)  

2

2

y
T

y
Tv

x
Tu

t
T

∂
′∂α=

∂
′∂+

∂
′∂+

′∂
′∂   (3) 

 
The initial and boundary conditions are as follows: 
 
t 0 0 0

0 0 0
( )cos 0
0 0
0

w w

u v T T
t u v T

T T t T at y
u T T at x
u T T as y

ω

∞

∞

∞

∞

′ ′ ′≤ = = =
′ ′> = =

′ ′ ′ ′ ′= − + =
′ ′= = =
′ ′→ → →∞

: , , ,
: , ,

, ,
, ,

 (4) 

 

where u and v are the velocity components in the x 
and y directions, respectively; α is the thermal diffu-
sivity; g is the acceleration due to gravity; t ′  is the 
time; T ′ is the temperature of the fluid in the bound-
ary layer; β is the volumetric coefficient of thermal 
expansion; ν is the kinematic viscosity; ω is the fre-
quency parameter; and φ is the inclination angle to the 
horizontal. 

The following non-dimensional quantities are in-
troduced:
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Eqs. (1)-(4) are reduced to the following non-

dimensional form: 
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The corresponding initial and boundary conditions 

in dimensionless form are as follows: 
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The non-dimensional forms of local and average 

skin friction, Nusselt number, are as follows: 
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3. Numerical techniques  

The two-dimensional, non-linear, unsteady, cou-
pled, and integro-partial differential Eqs. (6)-(8) under 
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the initial and boundary conditions (9) are solved by 
using an implicit finite difference scheme of the 
Crank-Nicolson type.  
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Now, we consider the solution of the two-dimen-

sional equation using the Crank-Nicolson method. 
The finite difference grid advances the solution from 
the time level (n) to the time level (n+1) as illustrated 
in Fig. 2. For the Dirchilet boundary conditions (i.e., 
the value of the function is specified at the bounda-
ries), the finite difference equations must be applied 
at the interior points. 

The region of integration is considered as a rectan-
gle with sides Xmax (=1) and Ymax (=14), where Ymax 

corresponds to Y= ∞,which lies very well outside the 
momentum and energy boundary layers. The maxi-
mum of Y was chosen as 14 after some preliminary 
investigations so that the last two of the boundary 
conditions (9) are satisfied. Here, the subscript i- des-
ignates the grid point along the X-direction, the j- 
along the Y direction, and the superscript n along the t 
direction. At any one time step, the coefficients n

j,iU  
and n

j,iV appearing in the difference equations are 
treated as constants. The values of U, V, and T are 
known at all grid points at t = 0 from the initial condi-
tions. 
The computations of U, V, and T at the time level 
(n+1) using the values at the previous time level (n) 
are carried out as follows: 

The finite difference Eq. (16) at every internal 
nodal point on a particular i-level constitutes a tridi-
agonal system of equations. Such systems of equa-
tions are solved using the Thomas algorithm as de- 

 
 
Fig. 2. The grid system. 
 
scribed in the work of Carnahan et al. [19].Thus, the 
values of T are found at every nodal point for a par-
ticular i at the (n+1)th time level. Using the values of 
T at the (n+1)th time level in Eq. (15), the values of U 
at the (n+1)th time level are found in a similar manner. 
Thus, the values of T and U are known on a particular 
i-level. Finally, the values of V are calculated explic-
itly using Eq. (14) at every nodal point on a particular 
i-level at the (n+1)th time level. This process is re-
peated for various i-levels. Thus, the values of T, U, 
and V are known at all grid points in the rectangular 
region at the (n+1)th time level. 

Computations are carried out until the steady state 
is reached. The steady-state solution is assumed to 
have been reached when the absolute difference be-
tween the values of U, as well as temperature T, at 
two consecutive time steps is less than 10-5 at all grid 
points. After experimenting with a few sets of mesh 
sizes, they have been fixed at the level ∆X=0.05, 
∆Y=0.25, and the time step ∆t=0.01. In this case, the 
spatial mesh sizes are reduced by 50% in one direc-
tion, then in both directions; the results are compared. 
It is observed that when the mesh size is reduced by 
50% in the X and Y directions, the results differ in the 
fourth decimal place. Hence, the above-mentioned 
sizes have been considered as the appropriate mesh 
sizes for calculation. 

The derivatives involved in Eqs. (10)-(13) are 
evaluated using a five-point approximation formula, 
and then the integrals are evaluated using the New-
ton-Cotes closed integration formula. 
 
4. Stability of the scheme  

The stability criterion of the finite difference 
scheme for constant mesh sizes is examined using the 
Von-Neumann technique as explained by Carnahan et 
al. [19]. The general term of the Fourier expansion for 
U and T at a time arbitrarily called t=0 is assumed to 
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be of the form XiXi ee βα  (here 1i −= ). At a later 
time t, these terms will become  
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Eqs. (18) and (19) can be rewritten as 
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After eliminating G′ in Eq. (20) using Eq. (21), the 

resultant equation is given by 
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Eqs. (22) and (21) can be written in matrix form: 
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Now, for the stability of the finite difference 

scheme, the modulus of each eigen value of the am-
plification matrix does not exceed unity. Since matrix 
Eq. (23) is triangular, the eigen values are its diagonal 
elements. The eigen values of the amplification ma-
trix are (1-A)/ (1+A) and (1-B)/ (1+B). Assuming that 
U is everywhere non-negative, and V is everywhere 
non-positive, we obtain  
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Because the real part of A is greater than or equal 

to zero, | (1-A)/ (1+A)≤ 1 always. Similarly,| (1-B)/ 
(1+B)| ≤1. 

Hence, the finite difference scheme is uncon-
ditionally stable. The local truncation error is 

)XYt(O 22 ∆+∆+∆ , and it tends to be zero as ∆t, 
∆X, and ∆Y also tend to be zero. Hence, the scheme 
is compatible. Stability and compatibility ensure con-
vergence. 
 

5. Results and discussion 

To assess the accuracy of the numerical results, the 
present result is compared with previous studies 
available in the literature. The velocity profiles for φ = 
57.650, Gr = 106, and Pr = 0.7 are compared with the 
theoretical results of the work of Chen et al. [3] as 
shown in Fig. 3, which are found to be in good 
agreement. 
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Fig. 3. Comparison of velocity profiles at X=1.0 

 
The transient velocity profiles at X=1.0 for differ-

ent values of the Grashof number and the inclination 
angle φ to the horizontal are presented in Fig. 4. Ve-
locity increases steadily as time advances, and it 
reaches a temporal maximum and consequently the 
steady state because the tangential component of the 
buoyancy force increases with φ and dominates in the 
downstream. A higher velocity is experienced 
throughout the transient period as well as in the 
steady-state level for a system having larger angles of 
inclination to the horizontal. The difference between 
the temporal maximum and the steady state decreases 
as φ increases. The velocity of air decreases as Gr 
increases. 

In Fig.5, the transient velocity profiles are plotted 
for different values of the Prandtl number of the fluid 
Pr and the frequency parameter ωt. It is observed that 
there is a decrease in the velocity of the fluid when Pr 
increases (i.e., for Pr=0.71 (air), 7.0 (water)). The 
higher the values of Pr, the higher is the rate of heat 
transfer; hence, the time taken to reach the steady 
state is high for higher values of Pr. The difference 
between the temporal maximum and steady state 
decreases with an increase in the value of the Prandtl 
number of the fluid. For the frequency parameter ωt, 
the velocity is observed to decrease for an increase in 
the value of ωt. The time taken to reach the steady 
state increases as ωt increases. It is also observed that 
the temporal maximum for velocity increases with an 
increase in the value of ωt. 

The profiles of transient temperature for various 
values of the Grashof number and the inclination 
angle φ are shown in Fig. 6. The temperature profiles 
presented are those at the leading edge of the plate, 
that is, at X=1.0. We observe from this figure that a 
lower temperature is experienced for a system having 
a higher value of φ. The effect of Grashof number on 
the temperature profile is nil. 

The effects of Prandtl number Pr and the frequency 
parameter ωt on temperature are shown in Fig. 7. The  

 

Fig. 4. Transient velocity profiles at X=1.0 for different Gr 
and φ (*-steady state). 

 

 
 
Fig. 5. Transient Velocity profiles at X=1.0 for different Pr 
and ω t(*-steady state). 

 
larger value of Pr gives rise to the thinner thermal  
boundary layer because increasing the value of Pr 
gives rise to a higher heat transfer. The temporal 
maximum is attained at an early stage for lower val-
ues of the frequency parameter ωt. It is also observed 
that the temperature profiles decrease with an increase 
in the value of ωt. 

In Fig. 8, the values of local shear stress are plotted 
for various values of Pr, φ, and ωt. The local wall 
shear stress decreases as φ decreases because the ve-
locity decreases with a decrease in the value of φ as 
shown in Fig. 4. The increasing value of Pr gives rise 
to a lower shear stress, which is also observed in Fig. 
5. This is quite expected because increasing Pr gives a 
thicker velocity profile, which in turn results in a 
lower shear stress value. It is also observed that shear 
stress decreases as ωt increases. 

The steady-state local Nusselt number, that is, the 
local heat transfer rate, is plotted in Fig. 9. It increases 
as X increases. The local heat transfer is stronger on 
Pr than on the other parameters because a lower Pr 
results in thicker temperature profiles. It is also ob-
served that the local Nusselt number increases with an 
increase in the value of φ . But local Nusselt number 
decreases as ω t increases. 

The average values of skin friction and the Nusselt 
number are shown in Figs. 10 and 11, respectively. In  
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Fig. 6. Transient temperature profiles at X=1.0 for different 
Gr and φ (*-steady state). 
 

 
Fig. 7. Transient temperature profiles at X=1.0 for different 
Pr and ω t(*-steady state). 
 

 
Fig. 8. Local skin friction. 
 

 
Fig. 9. Local Nusselt number. 

 
Fig. 10, it is observed that the average skin friction 
increases with time and reaches the steady state after 
some time. Owing to inclination with the horizontal, 
the average skin friction is found to decrease. A lower 
value of skin friction is observed for a higher value of 
Pr and ωt. 

The average Nusselt number is the same at a par-
ticular time level in the initial period for a fixed Pr. 
This shows that there is only heat conduction in the 
initial time level. The average Nusselt number de- 

 

Fig. 10. Average skin friction. 
 

 
Fig. 11. Average Nusselt number. 

 
creases as φ decreases. Furthermore, it is noticed that 
the average Nusselt number decreases with an in-
crease in the value of ωt. 
 

6. Conclusion 

Unsteady natural convection flow past a semi-
infinite inclined plate with oscillating temperature is 
considered in this paper. The governing partial differ-
ential equations are transformed into a set of dimen-
sionless governing equations, which are solved nu-
merically by using an implicit finite difference 
method. The conclusions of the study are as follows:   

(1) The difference between the temporal maximum 
and the steady-state value is reduced when φ increases. 

(2) The velocity is observed to be maximum near 
the upstream and decreases in the flow direction. 

(3) Velocity and temperature are found to decrease 
when the frequency parameter ωt increases. 

(4) The local shear stress decreases as ωt increases. 
(5) The local Nusselt number increases with an in-

crease in the value of the inclination angle φ. 
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